何小泷,男,毕业于四川大学山区河流保护与治理全国重点实验室,研究方向为空化空蚀,掺气减蚀,材料蚀破。主持国家博士后面上基金和自然科学基金青年项目各一项,发表论文40余篇,其中SCI一作与通讯20篇,主要研究方向为LBM空化模型构建与改进,水工材料空蚀演化规律与破坏机理,基于Basilisk的气泡溶解模拟。
代表作:
[1] X. L. He, J. M. Zhang, Q. Yang, H. N. Peng, and W. L. Xu (2020). Thermodynamics of multiple inceptions and interactions of laser-produced vapor cavitation bubbles using the lattice Boltzmann method. Physical Review E. (https://doi.org/10.1103/PhysRevE.102.063306)
[2] X. L. He, Q. Yang, H. N. Peng, and J. M. Zhang (2021). The non-condensable gas bubble dissolution process with a tunable surface tension multicomponent lattice Boltzmann model. Computers and Fluids. (https://doi.org/10.1016/j.compfluid.2021.105252)
[3] X. L. He, H. N. Peng, J. M. Zhang, and H. Yuan (2022). Multiple vapor cavitation bubble interactions with a thermal lattice Boltzmann method. Ocean Engineering. (https://doi.org/10.1016/j.oceaneng.2022.113058)
[4] X. L. He, H. N. Peng, J. M. Zhang, and Y. Liu (2023). Wall wettability effects on the collapse of the attached vapor cavitation bubble with a thermal lattice Boltzmann method. International Communications in Heat and Mass Transfer. (https://doi.org/10.1016/j.icheatmasstransfer.2022.106529)
[5] X. L. He, H. N. Peng, J. M. Zhang, and H. Yuan (2023). Thermodynamics of multiple inceptions and interactions of laser-produced vapor cavitation bubbles using the lattice Boltzmann method. Computers and Fluids. (https://doi.org/10.1016/j.compfluid.2022.10577)
[6] X. L. He, X. Song, J. M. Zhang, H. N. Peng, and S. L. Zhou (2023). Deciphering surface tension effects of double cavitation bubbles interaction: A lattice Boltzmann study. International Journal of Thermal Sciences. (https://doi.org/10.1016/j.ijthermalsci.2023.108266)
[7] X. L. He, H. N. Peng, and J. M. Zhang (2023). Lattice Boltzmann investigation on viscosity effects of the attached-wall cavitation bubble evolves on chemically patterned walls. Physics of Fluids. (https://doi.org/10.1063/5.0169239)
[8] X. L. He, and H. N. Peng (2024). Inception and evolution of a near-wall vapor cavitation bubble with the thermal lattice Boltzmann method. International Journal of Hydrogen Energy (https://doi.org/10.1016/j.ijhydene.2023.09.092)
[9] X. L. He, and H. N. Peng (2024). Contact-point analysis of attached-wall cavitation evolution on chemically patterned surfaces using the lattice Boltzmann method. Chemical Engineering Science. (https://doi.org/10.1016/j.ces.2024.119753)
[10] C. S. Huang, X. L. He*, J. M. Zhang* (2024), Cavitation pit evolution process of epoxy and polyurea coatings on mortar substrates. Ultrasonics Sonochemistry. (https://doi.org/10.1016/j.ultsonch.2024.106813)